Self-supervised Learning of Image Scale and Orientation Estimation

Abstract

We study the problem of learning to assign a characteristic pose, i.e., scale and orientation, for an image region of interest. Despite its apparent simplicity, the problem is nontrivial; it is hard to obtain a large-scale set of image regions with explicit pose annotations that a model directly learns from. To tackle the issue, we propose a self-supervised learning framework with a histogram alignment technique. It generates pairs of image patches by random rescaling/rotating and then train an estimator to predict their scale/orientation values so that their relative difference is consistent with the rescaling/rotating used. The estimator learns to predict a non-parametric histogram distribution of scale/orientation without any supervision. Experiments show that it significantly outperforms previous methods in scale/orientation estimation and also improves image matching and 6 DoF camera pose estimation by incorporating our patch poses into a matching process.

Publication
In The 32nd British Machine Vision Conference (BMVC) 2021
Jongmin Lee
Jongmin Lee
Assistant Professor of Computer Science Engineering

My research focuses on computer vision and machine learning, with interests in visual geometry, 3D vision, and spatial reasoning with multi-modal LLMs. I explore applications in autonomous systems, AR/VR, robotics, and physical AI.