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Abstract 
 

Burst image enhancement has been a topic of active research in recent years due to its ability to improve the quality of an 
image captured in adverse conditions such as motion and low-light scenes. Existing burst benchmarks use the static exposure 
time for all frames, limiting enhancement potential as dynamically exposed frames offer complementary scene information.  
In this paper, we introduce a novel approach for burst image enhancement using dynamic exposure times and base frame 
selection. We propose a new burst image enhancement benchmark using dynamic exposures. Additionally, we propose a 
learnable module to select the best base frame from the burst sequence, considering the heterogeneous degradation in 
dynamically exposed bursts. To improve spatial consistency during training, we also introduce a relational contextual bilateral 
loss. Evaluation on our proposed benchmark demonstrates the effectiveness of our method compared to existing burst image 
enhancement techniques.  

 
1. Introduction 

Burst image enhancement reconstructs a high-quality 
image from rapid sequence of  frames captured by 
handheld devices [1, 3, 4, 5]. Compared to the existing 
single image enhancement techniques [6, 7, 8, 9], burst 
image enhancement obtains a high-quality image in terms of 
signal-to-noise ratio (SNR) by accumulating aligned light 
information of the input bursts and a sharp image by 
aligning bursts while eschewing blurry frames [1, 2, 3, 10, 
11, 12, 13, 14, 15, 16, 17, 18]. The popularity of image 
enhancement using input bursts has increased for capturing 
motion and low-light scenes, but resulting images often 
suffer from various issues such as sensor noise, motion blur, 
and under-/over-exposure. Varying exposure times during 
burst acquisition can mitigate these image degradations by 
leveraging complementary information. 

Therefore, we propose a novel benchmark called 
Dynamically Exposed Burst (DEB) for enhancing burst 
images in challenging conditions. Existing burst image 
enhancement benchmarks take pictures at static intervals of 
exposure time, but this approach may not be sufficient to 
capture all the different types of irradiance in a scene. In 
contrast, dynamically exposed burst imaging takes pictures 
at varying intervals of exposure time, which enables the 
capture of images with a wider range of irradiance. Our 
DEB leverages the complementary information of the short-
exposed and long-exposed frames by combining the 
sharpness of short-exposed frames with the high signal-to-
noise ratio (SNR) of long-exposed frames. Figure 1 shows 
the enhancement results of trained models with dynamically 
exposed burst and statically exposed burst images with the 
same total exposure time. 

To improve the quality of burst enhancement, a robust 
base frame is needed for precise spatial alignment, as it 
serves as a reference for merging information between  

bursts. However, severe degradation of the base frame can 
cause misalignment among the input bursts, resulting in 
reducing the output image quality. Identifying frames with 
lesser degradation within the burst can mitigate this issue, 
allowing for the selection of a more suitable base frame. 
Despite this, existing methods [1, 2] commonly assume that 
the first frame of the input bursts is a base frame, even 
though the first frame may contain severe image degradation. 
To address this issue, we propose a frame selection module 
that automatically identifies the most suitable base frame 
during the burst frame alignment stage of the enhancement 
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Figure 1. Dynamic exposures vs. static exposures. (a) and 
(b) show the predictions of fine-tuning a DBSR [1] synthetic 
pretrained model on two different burst datasets: dynamic 
exposed and statically exposed bursts, respectively. (c) 
displays the ground-truth frame. 
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pipeline, removing the assumption that the first frame is 
always the optimal choice. Our base frame selection module 
can apply to the existing burst enhancement networks in a 
plug-and-play manner.  

We additionally introduce a new shift-invariant 
perceptual loss called the Relational Contextual Bilateral 
loss (RCB), which modifies the spatial distance term in the 
contextual bilateral loss. The contextual bilateral loss (CoBi) 
[19] added a regularization term for spatial structure in the 
contextual loss [20] to overcome inaccurate loss signals for 
false matches, but it penalized distance in absolute 
coordinates, which was inappropriate for large 
misalignments. To address this limitation, we calculate the 
spatial distance in relative rather than absolute coordinates 
using the average flow from source to target. 

2. Methods 

2.1 Burst Frame Selection  

The objective of this frame selector is to find a robust 
base frame within the input bursts, serving as the best target 
image for alignment with other burst images. The 
architecture, illustrated in Figure 2, takes an input burst 𝐼 ∈
ℝ!×#×$×% to generate an edge map 𝐁 ∈ ℝ!×#×$×%. An 
integrated feature map 𝐅 ∈ ℝ!×&×$×% is then constructed 
by concatenating 𝐼  and 𝐁  in the channel direction. 
Subsequently, the channel dimension of 𝐅  is collapsed 
using a convolution block, followed by spatial collapse 
through global average pooling (GAP), resulting in the 
frame selection vector 𝐟 ∈ ℝ!. 

We first obtain an edge map to measure image sharpness 
by counting the number of edge pixels, as a sharp image is 
good to use as a reference image for alignment [21]. The 
output edge magnitude map 𝐆 ∈ ℝ!×#×$×%is computed as 
the gradient magnitude using Sobel filters [22]. The final 
edge map 𝐁  is obtained by thresholding the edge 
magnitude map as follows: 𝐁' = 1 , if 𝐆' > 𝜏, 0 
otherwise, where 𝑖 is a flattened index of the tensor	 𝐁 and 
𝜏 is a threshold value. We set 𝜏 = 0.007. 

We obtain an integrated feature map 𝐅  by 
concatenating the edge map 𝐁  and the input 𝐼  to the 
channel dimension. This operation is expressed as 𝐅 =
𝐁⊕ 𝐼 , where ⊕  denotes the concatenation operation 

along the channel dimension. The integrated feature map 𝐅 
is transformed into a vector by collapsing both the spatial 
dimension and the channel dimension. We first collapse the 
channel dimension using 2-layer convolution denoted as 𝜂: 
𝐅( = 𝜂(𝐅). 𝜂  consist of two 1 × 1 convolutional layers 
with ReLU, where the first layer serves as channel attention 
for the integrated feature map, and the second layer handles 
dimension reduction. We get the final frame selection vector 
𝐟 ∈ ℝ! by applying spatial global average pooling: 

𝐟 = ∑ ∑ 𝐅(:,#,$$∈&#∈'
$×%

, (1) 
where each value in the vector 𝐟 represents the score of a 
base frame candidate. During inference, we apply the 
argmax  operation to the frame selection vector 𝐟  to 
determine the base frame index as follows: 𝑘= = argmax(f), 
where 𝑘= is the predicted base frame index. 

2.2 Loss Functions 

Frame selection loss by active learning. We employ 
hypothesis-based active learning [23, 24] to train our frame 
selector. A frame index whose frame yields the highest 
PSNR is given as supervision in the training dataset. We 
perform 𝑁 times evaluation, letting each of the 𝑁 burst 
frames be the base frame once. A burst index 𝑘 with the 
highest value among the 𝑁 evaluated results is used as the 
ground-truth base frame index. Then, we convert the index 
𝑘 into a ground-truth one-hot vector 𝐟+, ∈ ℝ!. Note that 
the value of 𝐟+,  for a specific iteration can be changed 
while the entire burst enhancement network is being trained. 
We utilize the cross-entropy between the ground-truth frame 
selection vector 𝐟+,  and the predicted frame selection 
vector	 𝐟  with softmax  function. The process can be 
defined as follows: 

where 𝜌 is a softmax function. 
Relational Contextual Bilateral Loss. We propose the 
relational contextual bilateral loss (RCB), which addresses 
large spatial misalignment issues in the spatial distance term 

ℒ-./01 =E(−𝐟+, ∗ log(𝜌(𝐟))), (2) 

True ("! , "") = (16.0, 16.0)
Pred ( ̅"! , ̅"") = (12.7, 14.0)

.(/, 0) .′(/, 0)
CoBi Loss 0.3467 0.9118
RCB Loss 0.3467 0.0013

(a) source image / (b) target image 0

(c) average of feature distances (d) average displacement  

Figure 3. Toy experiment of ℒ234. 𝑄 is the image shifted 
by (16,16) pixels from 𝑃. (c) shows the average values 
computed from feature distance term 𝔻(𝑃, 𝑄) and spatial 
distance term 𝔻′(𝑃,𝑄) in ℒ354' and ℒ234. (d) shows the 
difference between an average of predicted displacement 
(𝑓6N , 𝑓7N)  computed from 𝔻(𝑃,𝑄)  and the true shift 
(𝑓6 , 𝑓7). 
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Figure 2. An illustration of the proposed base frame selector. 
The frame selection vector 𝒇 is generated from input 𝐼 
and its edge map 𝑩 for the base frame selection.  
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a contextual bilateral loss (CoBi) [19]. When a source image 
𝑃 contains 𝑛 number of feature points and a target image 
𝑄 contains 𝑚 number of feature points, the CoBi loss can 
be defined as follows: 

where 𝔻(𝑝' , 𝑞8)	  is a distance matrix between source 
feature point 𝑝' ∈ 𝑃 and target feature point 𝑞8 ∈ 𝑄 and 

𝔻′absUp<, q=X = YUx< − x=X
> + Uy< − y=X

>
 measures spatial 

distance.  (𝑥' , 𝑦') and U𝑥8 , 𝑦8X are the spatial coordinates 
of feature point 𝑝'  and 𝑞8 , respectively. 𝑤?  denotes the 
weight of spatial awareness and is determined by measuring 
the amount of misalignment in the training dataset. However, 
𝔻′absU𝑝' , 𝑞8X  considers absolute coordinate differences 
only, potentially leading to incorrect optimization in cases 
of large misalignment between source and target. To 
mitigate this, the spatial distance term of ℒCoBi is modified 
to encode relative spatial distance by compensating for an 
average displacement. The updated relative spatial distance 
𝔻′rel can be defined as follows: 

𝔻′.1GU𝑝' , 𝑞8X = Y_U𝑥' − 𝑥8X − 𝑓6N`
>
+ _U𝑦' − 𝑦8X − 𝑓7N`

>
, (4) 

where 𝑓6N  and 𝑓7N  are scalar values of the average 
displacement between source to target. We can derive 𝑓6N  
and 𝑓7N from the feature distance matrix 𝔻(𝑃, 𝑄) as follows: 

𝑓6N =
1
𝑛EU𝑥Ĥ − 𝑥'X

'

,   𝑓7N =
1
𝑛EU𝑦Ĥ − 𝑦'X

'

, (5) 

where (𝑥Ĥ	𝑦Ĥ) is a predicted nearest neighbor coordinate of 
𝑝'. The predicted nearest neighbor coordinate can be derived 
as xĤ = 𝚥̂	mod	W, and 𝑦Ĥ = 𝚥̂ 		f Ĥ

%
g, where 𝑊 is the width 

of target 𝑄 . The predicted nearest neighbor index 𝚥	̂	 is 
derived as ȷ̂ = arg	min= _𝔻Up<, q=X`. Note that we 
normalize 𝑓6N  and 𝑓7N  using the width and height of the 
input. Finally, the proposed RCB loss is defined as: 

ℒ234(𝑃, 𝑄) =
1
𝑛E min

8JK,..,0
𝔻U𝑝' , 𝑞8X + 𝔻′relU𝑝' , 𝑞8X

N

'

, (6) 

where 	𝐷′rel  compensates for incorrectly penalizing the 
distance, even though they were correctly matched. Figure 
3 (c) shows ℒ234 penalizes less than ℒ354' by computing 
the relative coordinate difference in the spatial distance term 
𝔻′(𝑃, 𝑄)  if the flow field obtained from 𝔻(𝑃, 𝑄)  is 
consistent. Figure 3 (d) shows that (𝑓6N , 𝑓7N) obtained from 
𝔻(𝑃, 𝑄) can compensate for incorrect penalizing to nearly  
reconstruct the true shift (𝑓6 , 𝑓7). We use the perceptual loss 
to train the enhancement modules as follows: 

where ℒAlignedL1is an aligned L1 loss as in [1, 2]. The total 
loss is ℒU5V/G = ℒPercept + 0.01 ∗ ℒ-./01. 

3. Benchmark 

We propose a new synthetic benchmark, Dynamically 
Exposed Burst (DEB), which simulates heterogeneous 
image noise and motion blur with natural misalignments 

from camera movement of video datasets.  
We first convert 120 images to RAW images through 

invert tone mapping and invert gamma compression [25, 26], 
then inject shot noise following the Poisson distribution with 
𝜆 ∈ [1.5>, 1.5K[]  [16, 27]. Given the various types of 
cameras, noise is changeable. Therefore, we generate the 
noisy image by employing the different range of 𝜆 within 
[1.5>, 1.5K[] for the effect that the images look like they are 
taken with different cameras. After that, we synthesize the 
motion blur by averaging the frames gradually [28], which 
increases blur and decreases noise, similar to increasing 
exposure time [21, 29]. Finally, the bursts go through four 
steps in the unprocessing pipeline for four channels of RAW 
space [25]: inverse gain, inverse CCM, downsampling, and 
mosaicing. Note that the input video frames naturally 
contain shifting between frames for hand motion, and this is 
sufficient to simulate the misalignment of the synthetic burst 
frames. We finally obtain a synthetic RAW burst sequence 
with heterogeneous image noise and motion blur. 

The DEB consists of 1,128 synthetic dynamic exposed 
RAW bursts sourced from GoPro [30]. Each burst sequence 
consists of burst size 𝑁	of 14 RAW frames, which center-
cropped to 640 × 640  pixels. The source frames 
downscaled by a downsampling factor 	𝑠 = 4, resulting in 
4 × 80 × 80  input bursts. Ground-truth images are the 
source image of the first frame, sized at 3 × 640 × 640 
pixels. Figure 4 demonstrates the effect of the shorter 
exposure, which is sharp but noisy, while the images on the 
right demonstrate the effect of the longer exposure, which is 
high-SNR but blurry.  

4. Experiment 

4.1 Experimental settings 

We train models from scratch on the Dynamically Exposed 
Burst (DEB) dataset. The dataset is split into a ratio of 
728:200:200 for train, validation, and test sets, respectively. 
Burst frames are randomly shuffled during training to ensure 
adaptability to general shooting environment. We use 
AlignedPSNR, AlignedSSIM, and AlignedLPIPS as 
evaluation metrics following to [1, 2]. We perform early  

ℒCoBi(𝑃, 𝑄) =
1
𝑛E	 min

8JK,..,0
𝔻U𝑝' , 𝑞8X +	𝑤?𝔻′absU𝑝' , 𝑞8X

N

'

, (3) 

ℒ\1.]1^V = ℒAlignedL1 + 0.001 ∗ ℒ234 , (7) 

Burst input Ground-truth

Figure 4. Visualization of DEB. The left four columns 
display a subset of 14 input bursts, while the rightmost 
column is the ground-truth image. From the left to the right 
in burst, the exposure time increases. 
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stopping with the AlignedPSNR value of the validation set. 

4.2 Quantitative Results 

We evaluate the effectiveness of our frame selector by 
adding on two existing burst image enhancement methods, 
DBSR [1] and BIPNet [2], on the DEB. Table 1 shows a 
quantitative comparison with the existing burst image 
enhancement models and the results of including our frame 
selector in them. Compared to the trained model of the two 
representative burst image enhancement methods [1, 9], our 
model shows a consistent improvement by incorporating our 
frame selector, ℒ-./01 and ℒ234into the existing models. 
Furthermore, existing burst image enhancement methods 
are designed without considering the heterogeneous 
degradation situation, which leads to subpar performance. 
On the other hand, our method selects a robust base frame 
among the input burst frames captured in the heterogeneous 
degradations, which improves the performance to facilitate 
the alignment and fusion among burst frames. In addition, 
our RCB Loss improves the training stability by correcting 
the wrong training signal in the large misalignment between 
the predicted image and the GT image. 

4.3 Ablation study 

Table 2 shows an ablation study of the loss functions to 
validate each component. In rows 1 and 2, we confirm that 
our frame selection loss improves performance on the target 
task while learning the submodule. This shows that the 
ground-truth base frame supervision obtained actively by 
the model through alternation is effective for generalization 
rather than overfitting the training data. In rows 2 and 3, our 
RCB loss improves performance through more stable 
training compared to the existing shift-invariant perceptual 
loss [19]. This is because our RCB loss compensates for 
large shifts between the prediction and ground-truth image 
generated by the input bursts better than the existing loss 

[19]. Note that large misalignments are inevitably caused by 
handshake and object motion as the acquisition time of the 
input burst increases. 

4.4 Qualitative Results 

In this subsection, we present the qualitative comparison 
to verify the effectiveness of our method. Fig 5 shows a 
qualitative comparison of our frame selector with BIPNet 
[2]. The results on DEB show well-reconstructed sharp and 
complex edges of the construction site and the street with 
pedestrians by our frame selector compared to the sole 
BIPNet [2]. Overall, our frame selector helps to reconstruct 
high-frequency details such as sharp edges and texture, 
while predicted images of sole BIPNet [2] are blurry and 
noisy.  

5. Conclusion 

We have proposed a novel burst image enhancement 
approach using dynamic exposures and base frame selection. 
We also have introduced a new benchmark and learnable 
module for selecting the best base frame, along with the 
relational contextual bilateral loss to improve image quality. 
Our evaluations on synthetic datasets demonstrated the 
effectiveness of our proposed method. We believe that our 
proposed method can contribute to the advancement of burst 
image enhancement techniques and pave the way for further 
research in this field. 
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Table 2. Ablation study of the loss functions. All the case 
we include ℒAlignedL1. In this experiment, we train our 
frame selector with BIPNet [2] on the DEB.  
 

 Aligned 
PSNR 

Aligned 
SSIM 

Aligned 
LPIPS 

ℒ-./01 + ℒ234 32.116 0.918 0.293 
ℒ234 32.055 0.917 0.303 

ℒ354' [19] 27.882 0.847 0.497 

Table 1. Results on DEB. We train all models from 
scratch using the DEB training set. ‘+ours’ denotes the 
results with our frame selector and the proposed loss 
functions on top of the baseline model. 
 

 Aligned 
PSNR  

Aligned 
SSIM 

Aligned 
LPIPS 

DBSR [1] 19.837 0.545 0.550 
+ours 25.113 0.753 0.539 

BIPNet [2] 29.836 0.883 0.389 
+ours 32.116 0.918 0.293 

BIPNet BIPNet + ours Ground-truth

Figure 5. Qualitative comparison on DEB. Our frame 
selector with BIPNet [2] enhances high-frequency image 
details by merging effectively from multiple frames, while 
BIPNet [2] predicts blurry images. 
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